	Class: I B.Sc. Mathematics							
Semester	Course Type	Course Code	Course Title	Credits	Contact Hours/ week	CIA	Ext	Total
Ι	MCT 1	20U1MMC1	Calculus	3	5	25	75	100

Course Objectives:

- 1. To obtain the knowledge of differential calculus.
- 2. To gain knowledge about solving double and triple integration.
- 3. To acquire idea to solve integration using beta and gamma functions.

Unit-I:

p-r(Pedal) equation-Curvature – Radius of curvature in Cartesian and Polar coordinates-involutes– Evolutes, Envelope.

Unit-II:

Asymptotes – singular points- multiple points(node, cusp and conjugate points)-Tracing of curves-Folium of Descartes- cycloid-cardioid and Lemniscate of Bernoulli.

Unit-III:

Integration by parts-Bernoulli's formula - Reduction formulae - Problems.

Unit-IV:

Double integrals - Evaluation of double integral - Triple integrals - Change of variables.

Unit-V:

Definition - Properties of Beta and Gamma functions - Problems.

Text Book

1. S. Arumugam, Calculus, 2014, Edition, New Gamma Publishing House

Part I - Chapters: 2(2.7,2.8), 3,4. Part I - Chapters: 3(3.3-3.6, 3.10-3.13),

Book References:

- 1. T. K. ManicavachagomPillay, Differential Calculus, 2003 Edition, S. Viswanathan (Printers & Publishers) Pvt. Ltd.
- 2. T. K. ManicavachagomPillay, Integral Calculus 2000 Edition, S. Viswanathan (Printers & Publishers) Pvt. Ltd.

Web References:

- 1. https://nptel.ac.in/courses/111/104/111104092/
- 2. http://www.freebookcentre.net/SpecialCat/Free-Mathematics-Books-Download.html

Course Learning Outcomes

Number	Course Learning Outcome	Knowledge Level	
CL01	recall the basic concepts in differentiation and get the knowledge of p-r equation, Curvature, Radius of curvature, involutes, Evolutes, Envelope and apply it in problems	Upto K3	
CLO2	Understand the idea of Asymptotes, Tracing of curves-Folium of Descartes- cycloid-cardioid and Lemniscate and its related problems	Upto K3	
CLO3	Recall integration of by parts. Derive reduction formulae for trigonometric functions in integration process	Upto K3	
CLO4	Use the knowledge of double and triple integrals for finding area and volume	Upto K4	
CLO5	Acquire the information about beta, gamma function and evaluate it in various problems	Upto K3	

On the successful completion of the course, students will be able to

K1- Recall, K2 – Understanding, K3 – Applying, K4- Examining

Mapping with Courses Learning Outcomes (CLOs)

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07
CLO1	3	2	-	2	1	3	1	3	1	3	-	-
CLO2	2	1	-	-	2	3	2	3	1	3	-	-
CLO3	2	-	-	-	1	2	3	2	1	1	-	-
CLO4	2	1	-	1	2	3	3	3	3	2	1	-
CLO5	2	-	-	-	2	1	1	2	3	2	3	-
1 Desig land					2 Internet dista larral				2 Advisional Israel			

1. Basic level

2. Intermediate level

3. Advanced level

Pedagogy

Lecture, Seminar, Quiz, Problem Solving, Tutorial, Group Discussion and Power point presentation.

Lesson Plan

S. No.	Unit	Description	Taking Hours	Total	Pedagogy
1.	I	p-r(Pedal) equation-eand -,.	2		Lecture, Quiz,
		Curvature - Radius of curvature in Cartesian and Polar coordinate	5	15	Lecture,Problem Solving
		Involutes– Evolutes	3		Chalk and Talk, Group Discussion
		Envelope	5		
	П	Asymptotes	3		Lecture,Group Discussion
2		singular points- multiple points (node, cusp and conjugate points)	5	15	Lecture, Problem Solving
		Tracing of curves-Folium of Descartes	3		Lecture,Quiz
		cycloid-cardioid and Lemniscate of Bernoulli	4		Lecture
	ш	Integration by parts Problems.	2		Lecture, Seminar
2		Bernoulli's formula- problems	2	15	Lecture, Quiz
5.		Reduction formulae – examples	4	15	Lecture
		Reduction formulae- problems	3		Chalk and Talk, Tutorial
	IV	Double integralsand its problems	2		Lecture, Quiz
		Evaluation of double integral and its examples	5		Lecture, Problem Solving
4.		Triple integrals and its problems	4	15	Lecture, Tutorial
		Evaluation of Change of variables.	4		Lecture
5.	V	Definition of Beta and Gamma functions – Problems	2		Lecture,Quiz
		Properties of Beta and its problems	3		Lecture
		Properties of Gamma functions and its examples	5	15	Lecture, Seminar
		Relation between beta and gamma function and its problems	5		Lecture, Tutorial.
		Total		75	

Course Designer: Dr. S. Usha, Assistant Professor, Department of Mathematics.