DEPARTMENT OF PHYSICS				CLASS: I B.Sc. Mathematics/IIChemistry				
Sem.	Course type	Course code	Course title	Credits	Contact hours/week	CIA	Ext	Total
I/III	Allied–I	20U1PAC1/ 20U3PAC1	ALLIED PHYSICS - I	4	4	25	75	100

Course Objectives:

- 1. Understand the concept of strength of materials and viscous properties of liquids.
- 2. Import the concept of heat in doing mechanical work.
- 3. Understand the basic properties of light such as interference and diffraction.

Unit-I: Properties of Matter

Elasticity- units and dimension – Stress – Strain – Elastic limit- Hooke's law - Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition only) – Relation between the three moduli- Theory of torsional pendulum. Bending of beams – Expression for bending moment –Determination of young's modulus – Non– uniform bending–Theory and experiment– Pin and microscope method only.

Self Study: Experiment to determine the rigidity modulus of a wire and M.I. of a disc without symmetrical mass by torsion pendulum method.

Audit: Uniform bending theory and Experimental determination of young's modulus by scale and telescope method.

Unit-II: Viscosity

Introduction – Co–efficient of viscosity – Units and dimensions –Stream line motion and Turbulent motion -Equation of continuity – Bernoulli's theorem – Statement and proof – Venturimeter – Wings of an aeroplane -Poiseuille's formula for co–efficient of viscosity of a liquid- Determination of coefficient of viscosity using burette method- Stoke's formula (dimension method only) – Experiment to determine viscosity of a highly viscous liquid. **Self Study:** Pitot tube .

Audit: Comparison of Viscosities.

Unit-III: Conduction, Convection and Radiation (12 hrs)

Specific heat capacity of solids and liquids – Dulong and Petit's law – Newton's law of cooling –. Thermal conduction –Coefficient of thermal conductivity by Lee's disc method. Thermal radiation – Black body radiation – Distribution of energy in black body spectrum – Planck's radiation law – Rayleigh Jean's law, Wien's displacement law – Stefan's law of radiation. (No derivations).

Self Study: Convention process – Lapse rate – Green house effect.

Audit: Specific heat capacity of a liquid by cooling.

Unit-IV: Thermodynamics (12 hrs)

Zeroth and I Law of thermodynamics (Statement only) – Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine – II law and III law of thermodynamics (Statement only) – Entropy – Change in entropy in reversible and irreversible process – Change in entropy of a perfect gas.

Self Study: Change in entropy when ice is converted into steam.

Audit: Isothermal and Adiabatic process

Unit-V: Optics

Interference – interference due to reflected light – Condition for maxima and minima - Air wedge – thickness of a thin wire – Newton's rings – Determination of wavelength using Newton's rings. Diffraction – Difference between diffraction and interference – Theory of transmission grating – Polarisation – optical activity –Specific rotatory power (Definition only)

Self Study: Determination of wavelength using grating by Normal incidence method.

Audit: Biot's law, Laurent's half shade polarimeter

Books for Study

1. Properties of matter – Brijlal and Subramanyam – Eurasia Publishing co., New Delhi, III Edition 1983.

Unit I – 6.1, 6.2, 6.6(Definition only) – 6.16,6.18, 6.19, 6.22, Unit II – 7.2,7.3, 7.5, 7.7(1,6), 7.9, 7.10,7.11.

2. Heat Thermodynamics and Statistical Physics –Brijlal, Dr. N. Subrahmanyam and P.S. Hemne, S.Chand& Co, 16th Edition 2005

Unit III – 14.1, 14.5, 14.17, 15.1, 15.10, 15.11 8.1,8.6, 8.8, 8.12, 8.13, 8.14, 8.15, 8.17,. Unit IV – 4.2 (Statement only), 4.7, 4.21, 4.22, 4.23, 4.24, 4.28(Statement only), 5.1, 5.2, 5.4, 5.6, 5.9,5.15(Statement only).

- A text book of Optics Subramanyam and Brijlal, S. Chand and co..NewDelhi, 22nd Edition 2004. Unit V – 14.4, 15.2.1, 15.2.2, 15.5, 15.5.1, 15.5.2, 15.6, 15.6.1, 15.6.7, 17.1, 17.6, 18.7, 18.7.1, 20.2, 20.27, 20.29.
- 4. Sear's and Zemansky's "University Physics with Modern Physics ", Hugh D.Young and Roger A. Freedman , 14th edition ,2017, Pearson India Education Services Pvt.Ltd.

Applications: Unit I: Examples 11.5–11.7 (Pages 371–376).

Unit II: Examples 12.7–12.10 (Pages 405–409). Unit III: Examples 17.5,17.6,17.11 – 17.15 (Pages 581–582, 589–595). Unit IV : Examples 19.2 ,19.5, 20.2,20.4 – 20.7,20.10. (Page 648–652, 678– 680,684,686, 689– 691,693. Unit V: Examples 35.4–35.6 (Pages 1197–1198)

Books for References

- 1. Element of properties of matter, D.S.Mathur, 2001 S.Chand& Company Ltd, New Delhi,
- 2. Heat and Thermodynamics, Brijlal& Subramanyam, 16th Edition 2005, S. Chand & Co,
- 3. Heat and Thermodynamics , D.S. Mathur, 5thEdition 2014, SultanChand & Sons,
- 4. Optics and Spectroscopy ,R.Murugeshan, 6thEdition 2008,S.Chand and co.,
- 5. Optics ,Sathyaprakash, 7thEdition 1990,Ratan PrakashanMandhir, New Delhi,
- 6. D. Halliday, R.Rensick and J. Walker, Fundamentals of Physics, 6th edition, 2001, Wiley Eastern Limited.
- 7. Paul G. Hewitt *CONCEPTUAL PHYSICS*, (tenth edition), Pearson Education, Inc. and Dorling Kindersley Publishing Inc.2015.

Web Resources

1. Applications of Elastic Behaviour of Materials <u>https://www.toppr.com/guides/physics/mechanical-properties-of-solids/applications-of-elastic-behaviour-of-materials/</u>

- 2. Modulus of Elasticity of Concrete https://civiltoday.com/civil-engineering-materials/concrete/84-modulus-of-elasticity-of-concrete
- 3. Beam bending <u>https://realizeengineering.files.wordpress.com/2013/09/5eplannos8_beambendingskateboarder1.pdf</u>
- Draw Bending Moment & Shear Force Diagrams CantileverBeam<u>https://www.youtube.com/watch?v=QPgdfWooEDc</u>
- 5. Viscosity Examples https://www.lifepersona.com/the-10-most-known-viscosity-examples
- 6. Viscosity, Application, Flow and Factors https://schoolworkhelper.net/what-is-viscosity-application-flow-factors/
- 7. Viscosity https://sciencing.com/fluid/
- 8. Dynamics of fluid motion <u>https://realizeengineering.files.wordpress.com/2013/10/5eplannof4dynamics-of-fluid-motion1.pdf</u>
- 9. Conduction: http://htv-au.vlabs.ac.in/Heat Transfer by Conduction/experiment.html
- 10. Examples of Convection <u>https://studiousguy.com/examples-convection-everyday-life/</u>
- 11. Radiation <u>http://htv-au.vlabs.ac.in/Heat Transfer by Radiation/experiment.html</u> <u>http://htv-au.vlabs.ac.in/Black Body Radiation/experiment.html</u>
- 12. Examples of the First & Second Laws of Thermodynamics <u>https://education.seattlepi.com/everyday-examples-first-second-laws-thermodynamics-4740.html</u>
- 13. 2nd Law of thermodynamics <u>https://realizeengineering.files.wordpress.com/2013/10/5eplannot3_second-law.pdf</u>
- 14. Thermodynamics <u>https://sciencing.com/thermodynamics/</u>
- 15. Entropy https://realizeengineering.files.wordpress.com/2013/10/5eplannot4_entropy.pdf
- 16. Interference <u>http://vlab.amrita.edu/?sub=1&brch=189&sim=1520&cnt=1</u>
 17. Newton rings
 - http://vlab.amrita.edu/?sub=1&brch=189&sim=335&cnt=1
- 18. Wing scales cause light to diffract and interfere https://asknature.org/strategy/wing-scales-cause-light-to-diffract-and-interfere/

Course Designer(s):

- 1. Mr. V.Meenakshi Sundaram
- 2. Dr. M.Revathi
- 3. Mr. M.Megala

Lecture Schedule

Unit	Topics	Hours	Mode		
Unit I	Elasticity, units and dimension, Stress, Strain, Elastic limit, Hooke's	_			
	law, Young's modulus, Rigidity modulus, Bulk modulus Poisson's	3			
		2	Chalk and		
	Relation between the three moduli	2	talk,		
	heading moment	3	Quiz and		
	Determination of young's modulus. Non-uniform handing. Theory	2	assignment		
	Non-uniform bending, experiment, Pin and microscope method and	4			
	nrohlems	2			
	Viscosity Co-efficient of viscosity Units and dimensions Stream				
	line motion and Turbulent motion. Equation of continuity	3			
	Bernoulli's theorem. Statement and proof and applications	2	Chalk and		
	Venturimeter, Wings of an aeroplane and problems	2	talk.		
Unit II	Poiseuille's formula for co–efficient of viscosity of a liquid,		quiz,		
	Determination of coefficient of viscosity using burette method and	3	Group		
	problems		discussion		
	Stoke's formula (dimension method only), Experiment to determine	•			
	viscosity of a highly viscous liquid.	2			
	Specific heat capacity of solids and liquids, Dulong and Petit's law	2			
	Newton's law of cooling	2			
	Thermal conduction ,Coefficient of thermal conductivity by Lee's disc	2	Chalk and		
Unit III	method	4	talk, Quiz and assignment		
	Thermal radiation, Black body radiation, Distribution of energy in	2			
	black body spectrum	-			
	Planck's radiation law, Rayleigh Jean's law and discussion	2			
	Wien's displacement law, Stefan's law of radiation and problems	2			
	Zeroth and I Law of thermodynamics	2	PPT.		
	Carnot's engine	2	Chalk and		
Unit IV	Carnot's cycle, Efficiency of a Carnot's engine	2	talk,		
	If law of thermodynamics	1	Quiz and		
	Entropy , Change in entropy in reversible and irreversible process	2	assignment		
	Change in entropy of a perfect gas and problem discussion	3			
Unit V	interference, interference due to reflected light, conditions for	2	DDT		
	Air wedge thickness of a thin wire	2	PP1, Chalk and		
	Newton's rings Determination of wavelength using Newton's rings	2			
	Diffraction Difference between diffraction and interference. Theory of	5	Ouiz and		
	transmission grating	3	assignment		
	Polarisation, optical activity, Specific rotatory power,	2			

Pedagogy

Chalk and talk , materials, PPT, Quiz , Assignment , Seminar , Problem solving , Group discussion , interaction and field visit.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO No.	Course Learning Outcomes	Knowledge Level
CLO 1	Connect the principles of elasticity of a body such as tension, compression and shear in construction and allied fields	UptoK3
CLO 2	Use the dynamics of fluid motion to solve the practical applications problems.	UptoK3
CLO 3	Compare the conduction, convection and radiation process to solve the real life problems.	UptoK4
CLO 4	Use the laws of thermodynamics to heat engines.	UptoK3
CLO 5	Apply the wave nature of light to real life situations.	UptoK3

Mapping of CLO's with PSOs

#	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CL01	3			2			
CLO2	3			2			
CLO3	3			2			
CLO4	3			2			
CLO5	3			2			

Mapping of CLOs with POs

#	PO1	PO2	PO3	PO4	PO5
CLO1	3	2		2	2
CLO2	3	2	2	2	
CLO3	3	2	2	2	
CLO4	3	2	2	2	2
CLO5	3	1		1	

Advance application –3;Intermediate level –2; Basic level–1