DEPARTMENT OF MATHEMATICS				CLASS: I B.Sc. Mathematics				
Semester	Course Type	Course Code	Course Title	Credits	Contact Hours/week	CIA	Ext	Total
II	Core	20U2MMC4	Discrete Mathematics	4	5	25	75	100

COURSE OBJECTIVES:

- 1. To provide the students with an overview of Discrete Mathematics.
- 2. To learn about topics such as logic and proofs, sets and functions, recurrence relations, generating functions.
- 3. To give clear idea about matrix theory.

Unit-I: (SET THEORY AND MATHEMATICAL INDUCTION)

Sets – Subsets-Operation on sets–Union, intersection, symmetric difference, Cartesian product - Properties of Set Operations-Principle of Duality-Mathematical Induction.

Unit-II: (RELATIONS AND FUNCTIONS)

Relations- Representation of relation - Operation on relation- equivalence relation- Partitions and equivalence Classes- Functions - One to One and Onto Functions- Special type of functions - Invertible functions- Composition of Functions.

Unit-III: (MATHEMATICAL LOGIC)

Statements- Connectives –Wellformed formula- Truth table of a formula- Tautology- Implication and equivalence of formulae-Normal forms.

Unit-IV: (RECURRENCE RELATIONS AND GENERATING FUNCTIONS)

Recurrence relations- Solution of first order homogenous linear relations- Solution of non-homogenous relations - Finding generating functions of a recurrence relation - solving recurrence relation using generating functions.

Unit-V: (MATRIX ALGEBRA)

Basic definitions - Symmetric and skew symmetric matrices - inverse of a matrix - Elementary transformations - Rank - Test of consistency - Solving linear equations - Cayley - Hamilton theorem and the uses to find inverse and powers of the matrix - Eigen values and eigen vectors.

Text Book:

- M.K.Venkatraman, N.Sridharan and N.Chandrasekaran, Discrete Mathematics, The National Publishing Company (2007). Sections:1.1, 1.2, 1.4, 1.6, 1.7, 1.9, 2.1 to 2.5, 2.7, 3.1 to 3.5, 4.2, 5.1, 5.3 to 5.6, 9.2, 9.3, 9.5 to 9.8, 9.11.
- 2. S. Arumugam and A.T. Issac, Modern Algebra, SCITECH Publications PVT Ltd.,(2011). Sections: 7.3 to 7.8.

Books for Reference:

- 1. Trembly and Manohar, Discrete Mathematical structures with application to computer science, Tata McGraw Hill, New Delhi (1997).
- 2. Kenneth H. Rosen, "Discrete Mathematics and its Applications", 7 th edition, Tata McGraw Hill, 2012.

Web Resources

- 1. <u>http://accounts.mtts.org.in/article-list.php?page=1&search=&sortby=</u>
- 2. https://www.tutorialspoint.com/discrete_mathematics/index.htm
- 3. https://study.com/academy/course/math-108-discrete-mathematics.html

Pedagogy: Lecture, power point Presntation, Group Discussion, Quiz, Seminar, Problem solving, Tutorial and LMS (CANVAS, FLICKERS).

Course Learning Outcome

On the successful completion of the course, students will be able to

Number	Course Learning Outcome	Knowledge
Tumber	Course Learning Outcome	level
	Determine union, intersection, symmetric difference and Cartesian product of	
CLO1	sets and also apply the principle of Mathematical induction to prove certain	Up to K3
	mathematical formula.	
CLO2	Recognize equivalence relations and to categorize types of functions.	Up to K4
CLO3	Analyze the validity of a formula using mathematical logic and also to find	Up to K4
	normal forms of a formula.	Op 10 K4
CLO4	Construct and solve recurrence relations using generating functions.	Up to K3
CLO5	Classify types of matrices and also to solve linear equations by applying	Up to K3
	matrices.	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CLO1	3	1	1				2
CLO2	3	1				1	
CLO3	3	2	1		1	2	1
CLO4	3		2	1	1	2	
CLO5	3	2	2		1	2	1

Mapping with Programme Specific Outcome

Pedagogy

Chalk and Talk, PPT, group discussion, seminar, interaction, problem solving, quiz, tutorial and virtual labs & Learning management systems (CANVAS)

Mapping with Programme Outcome

	PO1	PO2	PO3	PO4	PO5
CLO1	3				
CLO2	2		2		
CLO3	2	1	3		
CLO4	2				
CLO5	1		2		1

3- Advanced Applications 2- Intermediate Level

1- Basic Level

Lesson Plan						
Unit	Description	Contact Hours	Total	Pedagogy		
	Introduction to sets subsets	1		ICT tools		
Ι	Operation on sets – union & intersection	3		Lecture		
	Symmetric difference, Cartesian product	4	15	Lecture		
	Principle of Duality	3	15	Lecture		
	Mathematical Induction.	3		Lecture		
	Tutorial 1			LMS(CANVAS)		
П	Introduction to relations	1		Lecture		
	Representation of relation	1		Lecture		
	Operations on relations	2		Lecture		
	Equivalence relation and equivalence classes	3	15	Lecture		
	Introduction to Functions	1		Lecture		
	Types of functions - One to One and Onto Functions	3		Lecture		
	Invertible functions	1		Lecture		
	Composition of Functions	2		Lecture		
	Tutorial	1	-	OUIZ through FLICKERS		
	Statements		ICT tools			
	Connectives		Lecture			
	Well formed formula	1		Lecture		
	Truth table of a formula	of a formula 2				
Ш	Tautology	2	15	Lecture		
	Implication and equivalence of formulae	2		ICT Tools		
	Normal forms	3				
	Tutorial	1		QUIZ through the LIVIS QUIZIZ		
	Introduction to Recurrence relations		Lecture			
	Solution of first order homogenous linear relations	4		Lecture		
	Solution of non-homogenous relations	3		Lecture		
IV	Finding generating functions of a recurrence relation	3	15	Lecture		
	solving recurrence relation using generating functions	3		Lecture		
	Introduction to Recurrence relations 1			Lecture		
	Tutorial			Group Discussion		
V	Basic definitions in matrix theory	1		Lecture		
	Symmetric and skew symmetric matrices	2		Lecture		
	Inverse of a matrix	1		Lecture		
	Elementary transformations	1		Lecture		
	Rank of a matrix 1 Test of consistency-Solving linear equations 2		- 15	Lecture		
				ICT Tools		
	Cayley - Hamilton theorem and the uses to find inverse and powers of the matrix	2		Lecture		
	Eigen values and eigen vectors.	1	Lecture			
	Tutorial	1		LMS-CANVAS		
	Total hours	75				

Course Designer

Dr. I. SAHUL HAMID, Assistant Professor, Department of Mathematics The Academic Council, The Madura College (Autonomous): 26th August 2020